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« What is quantum machine learning?
 How do we implement it on a quantum computer?

 How does it perform compared to classical approaches?
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Quantum Machine Learning Zh

« Goal:
* Implement quantum machine learning algorithms on quantum
computer
« Take advantage of superpositions and entanglement
« We focus on neural networks
* Hope:
* Quantum machine learning should either be faster or more accurate

than classical counterparts

« Tackle new problems that are not possible with classical approaches
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Neural Network in the Brain?
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Classical Artificial Neural Network
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These types of neural networks have been applied successfully in many different
areas such as image analysis, natural language processing (Chat-GPT), etc.
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Quantum Artificial Neural Networks Zh

 ltis not clear how to best implement neural networks on a quantum
computer: open research question

» The field is still in its infancy

* Most approaches are theoretical based on experimental quantum
hardware

» However, there are promising approaches for small problems



Approach 1:

Hybrid Classical-Quantum Neural Network #1

Classical neural network
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X ... input

W ... weights

h ... hidden layers
y ... output



Approach 1: Zh
Hybrid Classical-Quantum Neural Network #2 aw

Classical neural network
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Approach 2: 4
Quantum Neural Network with Unitary Layers aw

* The whole network is implemented as a parameterized quantum circuit
« QNN with i layers: v (0)=u,(6,)u,,(6..)...U,(6,)

« U ... unitary transformation
o 0=[0,0._,....0]"set of parameters for the QNN
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Readout qubit: After applying i unitary transformations, the state of q,.,, should correspond to the real label
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How Well do These Approaches Work for
Solving real Machine Learning Problems?
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Datasets
Dataset #Features #Records #Classes
Iris 4 100 2
Rain 5 100 2
Vlds 5 100 2
Custom 2 100 2
Adhoc 3 100 2
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Software and Hardware Zh
«  Qiskit:
« Python library for quantum computing by IBM

e Quantum simulator:
Open-Source Quantum

* By IBM Development

« Can be installed locally or publicly available via cloud
https://qiskit.org/

* Quantum computer:
« By IBM
« Publicly available via cloud

A close-up view of an IBM quantum computer. The processor is in the silver-colored cylinder.
Stephen Shankland/CNET


https://qiskit.org/

Zurich University
of Applied Sciences

Evaluation of Different Quantum Neural Networks
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Metric = accuracy (between 0 and 1): higher is better

Dataset Classical NN QNN QNN
(Quantum Simulator)  (Quantum Computer)
Iris 1.00 1.00 1.00
Rain 0.70 0.83 0.79
Vids 0.94 0.93 0.95
Custom 0.64 0.74 0.75
Adhoc 0.61 0.80 0.75
Average 0.78 0.86 0.85

Quantum neural network (QNN) outperforms classical neural network (NN)
on specific datasets

R. D. M. Simdes, P. Huber, N. Meier, N. Smailov, R. M. Fichslin and K. Stockinger, "Experimental Evaluation of Quantum Machine Learning
Algorithms,” in IEEE Access, vol. 11, pp. 6197-6208, 2023, doi: 10.1109/ACCESS.2023.32364009.
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Experimental Results #2 Zh
Details on the Rain Dataset

Comparison of 5 different quantum circuits on
quantum simulator (left) and quantum computer (right)
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We can observe a high fluctuation of the results.
score = accuracy (higher is better)
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Conclusions

« Quantum machine learning is still in its infancy
« Currently we can only solve small problems

 Quantum hardware needs to mature and become
more fault-tolerant

« There is a steep learning curve to get into the topic
» First results are very promising

« Early movers have an advantage
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ABSTRACT Machine learning and quantum computing are both areas with considerable progress in recent
years. The combination of these disciplines holds great promise for both research and practical applications.
Recently there have also been many theoretical contributions of quantum machine learning algorithms
with experiments performed on quantum simulators. However, most questions concerning the potential of
machine learning on quantum computers are still unanswered such as How well do current quantum machine
learning algorithms work in practice? How do they compare with classical approaches? Moreover, most
experiments use different datasets and hence it is currently not possible to systematically compare different
approaches. In this paper we analyze how quantum machine learning can be used for solving small, yet
practical problems. In particular, we perform an experimental analysis of kernel-based quantum support
vector machines and quantum neural networks. We evaluate these algorithm on 5 different datasets using
different combinations of quantum feature maps. Our experimental results show that quantum support vector
machines outperform their classical counterparts on average by 3 to 4% in accuracy both on a quantum
simulator as well as on a real quantum computer. Moreover. quantum neural networks executed on a quantum
computer further outperform quantum support vector machines on average by up to 5% and classical neural
networks by 7%.

https://ieeexplore.ieee.org/document/10015720
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